Arithmetic progressions on Pell equations
نویسندگان
چکیده
منابع مشابه
Arithmetic Progressions on Pell Equations
IF Introduction sn IWWW fremner I onsidered rithmeti progressions on ellipti urvesF fremner onstruted ellipti urves with rithmeti progressions of length UD iFeF rtionl points @X; Y A whose XE oordintes re in rithmeti progressionF sn following pper fremnerD ilvermn nd znkis P showed tht sugroup of the ellipti urve E@QA with E X Y 2 a X@X 2 n 2 A of rnk I doe...
متن کاملArithmetic Progressions and Pellian Equations
We consider arithmetic progressions on Pellian equations x2 − d y2 = m, i.e. integral solutions such that the y-coordinates are in arithmetic progression. We construct explicit infinite families of d,m for which there exists a five-term arithmetic progression in the y-coordinate, and we prove the existence of infinitely many pairs d,m parametrized by the points of an elliptic curve of positive ...
متن کاملOn rainbow 4-term arithmetic progressions
{sl Let $[n]={1,dots, n}$ be colored in $k$ colors. A rainbow AP$(k)$ in $[n]$ is a $k$ term arithmetic progression whose elements have different colors. Conlon, Jungi'{c} and Radoiv{c}i'{c} cite{conlon} prove that there exists an equinumerous 4-coloring of $[4n]$ which is rainbow AP(4) free, when $n$ is even. Based on their construction, we show that such a coloring of $[4n]$...
متن کاملParameterized norm form equations with arithmetic progressions
Buchmann and Pethő [5] observed that following algebraic integer 10 + 9α + 8α + 7α + 6α + 5α + 4α, with α = 3 is a unit. Since the coefficients form an arithmetic progressions they have found a solution to the Diophantine equation (1) NK/Q(x0 + αx1 + · · ·+ x6α) = ±1, such that (x0, . . . , x6) ∈ Z is an arithmetic progression. Recently Bérczes and Pethő [3] considered the Diophantine equation ...
متن کاملArithmetic Progressions on Conics.
In this paper, we look at long arithmetic progressions on conics. By an arithmetic progression on a curve, we mean the existence of rational points on the curve whose x-coordinates are in arithmetic progression. We revisit arithmetic progressions on the unit circle, constructing 3-term progressions of points in the first quadrant containing an arbitrary rational point on the unit circle. We als...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 2008
ISSN: 0022-314X
DOI: 10.1016/j.jnt.2008.01.003